论文标题
异质盘和球的扩散:出口时间和均质公式的新闭合表达式
Diffusion in heterogeneous discs and spheres: new closed-form expressions for exit times and homogenization formulae
论文作者
论文摘要
扩散运输的数学模型为我们对化学,生化和生物运输现象的理解。对此类模型的分析通常集中在相对简单的几何形状上,并通过高度理想化的均匀介质进行扩散。相反,扩散运输理论的实际应用不可避免地涉及处理更复杂的几何形状以及处理异质媒体。扩散传输的最基本特性之一是平均粒子寿命或平均退出时间的概念,这是第一个通道时间概念的特殊应用,并提供了扩散粒子达到吸收边界所需的平均时间。对平均颗粒寿命的大多数形式分析都适用于相对简单的几何形状,通常具有均匀(空间不变)的材料特性。在这项工作中,我们提出了一个通用框架,该框架可为平均粒子寿命和较高的粒子寿命矩提供精确的数学洞察力,以散布在异质盘和径向对称性的异质盘和球体中。我们的分析适用于具有不同层的任意数和排列的几何形状,其中每一层的传输以独特的扩散率为特征。我们为在任意位置释放的扩散粒子的平均粒子寿命获得了精确的闭合形式表达式,我们将这些结果概括为在一系列不同边界条件的任何高阶粒子寿命中提供精确的,封闭形式的表达式。最后,使用这些结果,我们构建了新的均质公式,该公式通过异质盘和球体提供了准确的简化扩散描述。
Mathematical models of diffusive transport underpin our understanding of chemical, biochemical and biological transport phenomena. Analysis of such models often focusses on relatively simple geometries and deals with diffusion through highly idealised homogeneous media. In contrast, practical applications of diffusive transport theory inevitably involve dealing with more complicated geometries as well as dealing with heterogeneous media. One of the most fundamental properties of diffusive transport is the concept of mean particle lifetime or mean exit time, which are particular applications of the concept of first passage time, and provide the mean time required for a diffusing particle to reach an absorbing boundary. Most formal analysis of mean particle lifetime applies to relatively simple geometries, often with homogeneous (spatially-invariant) material properties. In this work, we present a general framework that provides exact mathematical insight into the mean particle lifetime, and higher moments of particle lifetime, for point particles diffusing in heterogeneous discs and spheres with radial symmetry. Our analysis applies to geometries with an arbitrary number and arrangement of distinct layers, where transport in each layer is characterised by a distinct diffusivity. We obtain exact closed-form expressions for the mean particle lifetime for a diffusing particle released at an arbitrary location and we generalise these results to give exact, closed-form expressions for any higher-order moment of particle lifetime for a range of different boundary conditions. Finally, using these results we construct new homogenization formulae that provide an accurate simplified description of diffusion through heterogeneous discs and spheres.