论文标题

在嘈杂的量子机上模拟非本地立方相互作用

Simulating nonnative cubic interactions on noisy quantum machines

论文作者

Shi, Yuan, Castelli, Alessandro R., Wu, Xian, Joseph, Ilon, Geyko, Vasily, Graziani, Frank R., Libby, Stephen B., Parker, Jeffrey B., Rosen, Yaniv J., Martinez, Luis A., DuBois, Jonathan L

论文摘要

作为通用计算机的里程碑,我们证明可以对量子处理器进行编程以有效模拟硬件本地的动态。此外,在没有误差校正的嘈杂设备上,我们表明,当使用模块化门(而不是一组限制的标准门)编译量子程序时,仿真结果将得到显着改善。我们通过求解一个立方相互作用问题来证明一般方法,该问题出现在非线性光学,量规理论以及血浆和流体动力学中。为了编码非本地哈密顿的进化,我们将希尔伯特空间分解为不变子空间的直接总和,在该子空间中,非线性问题被映射到有限的二维Hamiltonian模拟问题。在一个三州的示例中,最终的统一进化是通过约20个标准门的产物实现的,使用〜10个模拟步骤可以在最先进的量子硬件上进行,然后在结果被拆卸损坏之前。相比之下,当统一进化被实现为单一立方栅极时,模拟深度的改进不止一个数量级,该元素是使用最佳控制直接编制的。或者,也可以通过插值控制脉冲来编译参数门。因此获得的模块化门为量子哈密顿模拟提供了高保真的构建块。

As a milestone for general-purpose computing machines, we demonstrate that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware. Moreover, on noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates instead of a restricted set of standard gates. We demonstrate the general methodology by solving a cubic interaction problem, which appears in nonlinear optics, gauge theories, as well as plasma and fluid dynamics. To encode the nonnative Hamiltonian evolution, we decompose the Hilbert space into a direct sum of invariant subspaces in which the nonlinear problem is mapped to a finite-dimensional Hamiltonian simulation problem. In a three-states example, the resultant unitary evolution is realized by a product of ~20 standard gates, using which ~10 simulation steps can be carried out on state-of-the-art quantum hardware before results are corrupted by decoherence. In comparison, the simulation depth is improved by more than an order of magnitude when the unitary evolution is realized as a single cubic gate, which is compiled directly using optimal control. Alternatively, parametric gates may also be compiled by interpolating control pulses. Modular gates thus obtained provide high-fidelity building blocks for quantum Hamiltonian simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源