论文标题
在整数的L-Spectra的同型类型上
On the homotopy type of L-spectra of the integers
论文作者
论文摘要
我们表明,整数的二次和对称L理论与Anderson二元性有关,并表明这两个光谱都积分地分为实数的L理论和广义的Eilenberg-Mac Lane Spectrum。结果,我们获得了空间g/top的相应分裂。最后,我们证明了最近为Grothendieck研究的真正L-Spectra(Witch Theory)设计的真实L-Spectra。
We show that quadratic and symmetric L-theory of the integers are related by Anderson duality and show that both spectra split integrally into the L-theory of the real numbers and a generalised Eilenberg-Mac Lane spectrum. As a consequence, we obtain a corresponding splitting of the space G/Top. Finally, we prove analogous results for the genuine L-spectra recently devised for the study of Grothendieck--Witt theory.