论文标题

在腔体演变和雷利 - 超富氦中的植物方程式

On the cavity evolution and the Rayleigh--Plesset equation in superfluid helium

论文作者

Nemirovskii, Sergey K.

论文摘要

根据两流体流体动力学,获得了超级流体氦气中球形气泡的动力学的著名雷利 - 植物方程的类似物。质量流速度$ v $和普通组件$ v_ {n} $的速度被选为自变量。由于HEII的两流体性质,出现了边界位置的进化方程中的跨项$ \ r(t)$,在普通流体中经典的雷利 - 插图方程中不存在。其中一个重新统治了$(dr/dt)^{2} $面前的系数。另一个与粘性术语正式相吻合的额外术语描述了边界振荡的衰减。与HEI相比,这个“超阻尼”术语大大超过了通常的粘性术语,导致腔动力学的差异显着差异。特别是,这导致了在许多作品中观察到的蒸气 - 液化边界振荡异常抑制的有趣作用。还有一个与正常分量的平方速度成正比的额外术语,该期限与派生$ DR/DT $无关,并且可以包含在压降中。它的物理含义是它描述了正常分量流动产生的类似“ bernoulli”的压力。所获得的结果声明,应审查超流体氦中腔动力学的一些结果

On the basis of the two-fluid hydrodynamics, an analogue of the famous Rayleigh-Plesse equation for the dynamics of a spherical bubble in superfluid helium is obtained. The mass flow velocity $v$ and the velocity of the normal component $v_{n}$ were chosen as independent variables. Due to the two-fluid nature of HeII, the cross terms in the evolution equation for the boundary position $\ R(t)$ appeared, which were absent in classical Rayleigh-Plesset equation in ordinary fluids. One of them renormilizes the coefficient in front of $(dR/dt)^{2}$. Another additional term formally coinciding with the viscous term, describes the attenuation of the boundary oscillations. This "extra-damping" term, greatly exceeding the usual viscous term, leads to a significant difference in the dynamics of cavity compared to HeI. In particular, this results in the interesting effect of abnormal suppression of oscillations of the vapor--liquid boundary observed in many works. There is also an additional term proportional to the squared velocity of the normal component, which is independent of the derivative $dR/dt$, and can be included in the pressure drop. Its physical meaning is that it describes a "Bernoulli" -like pressure created by the flow of a normal component. The obtained result declares that some results on the dynamics of the cavity in superfluid helium should be reviewed

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源