论文标题

通过有监督的多任务学习扩展无监督的神经图像压缩

Extending Unsupervised Neural Image Compression With Supervised Multitask Learning

论文作者

Tellez, David, Hoppener, Diederik, Verhoef, Cornelis, Grunhagen, Dirk, Nierop, Pieter, Drozdzal, Michal, van der Laak, Jeroen, Ciompi, Francesco

论文摘要

我们专注于Gigapixel组织病理学图像训练卷积神经网络的问题,以预测图像级目标。为此,我们扩展了神经图像压缩(NIC),这是一个图像压缩框架,可使用经过训练的编码网络降低这些图像的维度。我们建议使用监督的多任务学习(MTL)训练该编码器。我们将提出的MTL NIC应用于两个组织病理学数据集和三个任务。首先,我们获得了2016年肿瘤增殖评估挑战的最新结果(TUPAC16)。其次,我们成功地将结直肠肝转移(CLM)的图像中的组织病理学生长模式分类。第三,我们通过直接从同一CLM数据中的总生存中学习来预测患者死亡的风险。我们的实验结果表明,MTL目标学到的表示形式是:(1)由于有监督的训练信号而高度具体,并且(2)可转移,因为相同的功能在不同的任务中表现良好。此外,我们以不同的培训目标培训了多个编码器,例如MTL的无监督和变体,观察到MTL中的任务数量与TUPAC16数据集中的系统性能之间存在正相关。

We focus on the problem of training convolutional neural networks on gigapixel histopathology images to predict image-level targets. For this purpose, we extend Neural Image Compression (NIC), an image compression framework that reduces the dimensionality of these images using an encoder network trained unsupervisedly. We propose to train this encoder using supervised multitask learning (MTL) instead. We applied the proposed MTL NIC to two histopathology datasets and three tasks. First, we obtained state-of-the-art results in the Tumor Proliferation Assessment Challenge of 2016 (TUPAC16). Second, we successfully classified histopathological growth patterns in images with colorectal liver metastasis (CLM). Third, we predicted patient risk of death by learning directly from overall survival in the same CLM data. Our experimental results suggest that the representations learned by the MTL objective are: (1) highly specific, due to the supervised training signal, and (2) transferable, since the same features perform well across different tasks. Additionally, we trained multiple encoders with different training objectives, e.g. unsupervised and variants of MTL, and observed a positive correlation between the number of tasks in MTL and the system performance on the TUPAC16 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源