论文标题
表面链接和kei着色的桥数
The bridge number of surface links and kei colorings
论文作者
论文摘要
Meier和Zupan在$ S^4 $中引入了表面链路的桥梁三触角,作为对经典链路的桥梁分解的4维模拟,这给出了称为桥数的表面链路的数值不变。我们证明,对于任何整数$ n \ geq 4 $,有无限的地面结,桥数$ n $。为了证明这一点,我们使用KEI的表面链接着色,并为桥梁的桥梁数量提供了较低的边界。
Meier and Zupan introduced bridge trisections of surface links in $S^4$ as a 4-dimensional analogue to bridge decompositions of classical links, which gives a numerical invariant of surface links called the bridge number. We prove that there exist infinitely many surface knots with bridge number $n$ for any integer $n \geq 4$. To prove it, we use colorings of surface links by keis and give lower bounds for the bridge number of surface links.