论文标题
对数 - 孔孔多项式IV:近似交换,紧密混合时间和森林的近乎最佳采样
Log-Concave Polynomials IV: Approximate Exchange, Tight Mixing Times, and Near-Optimal Sampling of Forests
论文作者
论文摘要
我们证明,在矩形,确定性分布以及与对数符号多项式相关的更普遍的分布中,自然随机行走的紧密混合时间边界是紧密的混合时间边界。对于在$ n $元素的地面组中的等级$ k $的成绩单,或与$ n $变量上的均质度$ k $的log-conconcove多项式相关的更常见的分布,我们表明,向上的随机步行是从支持中的任意点开始的,在时间$ o(k \ log k)$中。与以前的分析不同[ALOV19,CGM19]不同,我们的界限不依赖$ n $或起点,并且一直持续到不断的因素。主要的新成分是我们称为近似交换的属性,是对矩形和有价值的矩阵的经过良好的交换属性的概括,这可能具有独立的利益。特别是,给定函数$μ:{[n] \选择k} \ to \ to \ mathbb {r} _ {\ geq 0},$我们的近似交换属性意味着一个简单的本地搜索算法给出$ k^{o(k)$ y $ \ max_的近似值,当$μ$强烈瑞利时,这种贪婪给出了相同的近似值。 作为一个应用程序,我们展示了如何利用淡淡的随机步行到大约采样随机森林或随机跨越图的随机跨越,并在$ o中$ o $ o(n \ log^2 n)。$对随机森林进行采样的最著名结果是fpaus fpaus,是\ cite {alov19,cgm19,cite {Alov19,cgm19}。对于跨越树,我们通过[SCH18]对几乎线的时间算法进行了改进。我们的分析也适用于加权图,并且是第一个解决这些问题的几乎线性运行时间的人。
We prove tight mixing time bounds for natural random walks on bases of matroids, determinantal distributions, and more generally distributions associated with log-concave polynomials. For a matroid of rank $k$ on a ground set of $n$ elements, or more generally distributions associated with log-concave polynomials of homogeneous degree $k$ on $n$ variables, we show that the down-up random walk, started from an arbitrary point in the support, mixes in time $O(k\log k)$. Our bound has no dependence on $n$ or the starting point, unlike the previous analyses [ALOV19,CGM19], and is tight up to constant factors. The main new ingredient is a property we call approximate exchange, a generalization of well-studied exchange properties for matroids and valuated matroids, which may be of independent interest. In particular, given function $μ: {[n] \choose k} \to \mathbb{R}_{\geq 0},$ our approximate exchange property implies that a simple local search algorithm gives a $k^{O(k)}$-approximation of $\max_{S} μ(S)$ when $μ$ is generated by a log-concave polynomial, and that greedy gives the same approximation ratio when $μ$ is strongly Rayleigh. As an application, we show how to leverage down-up random walks to approximately sample random forests or random spanning trees in a graph with $n$ edges in time $O(n\log^2 n).$ The best known result for sampling random forest was a FPAUS with high polynomial runtime recently found by \cite{ALOV19, CGM19}. For spanning tree, we improve on the almost-linear time algorithm by [Sch18]. Our analysis works on weighted graphs too, and is the first to achieve nearly-linear running time for these problems.