论文标题

LOCA:标准化数据坐标的本地保形自动编码器

LOCA: LOcal Conformal Autoencoder for standardized data coordinates

论文作者

Peterfreund, Erez, Lindenbaum, Ofir, Dietrich, Felix, Bertalan, Tom, Gavish, Matan, Kevrekidis, Ioannis G., Coifman, Ronald R.

论文摘要

我们提出了一种基于深度学习的方法,用于从科学测量中获取标准化的数据坐标。数据观测值是从未知的,非线性的riemannian歧管的未知的非线性变形中建模的,该样品由一些差异的潜伏变量参数化。通过利用重复的测量抽样策略,我们提出了一种学习$ \ Mathbb {r}^d $中嵌入的方法,该方法是对歧管的潜在变量等值的方法。这些数据坐标是在变量平稳变化下不变的,可以在同一现象的不同仪器观察之间匹配。我们的嵌入是使用局部共形自动编码器(LOCA)获得的,该算法通过使用局部Z测量程序构建嵌入以纠正变形的算法,同时保留相关的几何信息。我们证明了LOCA在各种模型设置上的等距嵌入性能,并观察到它具有有希望的插值和外推能力。最后,我们将LOCA应用于单站点Wi-Fi本地化数据,并基于$ 2 $维投影的$ 3 $维曲面估算。

We propose a deep-learning based method for obtaining standardized data coordinates from scientific measurements.Data observations are modeled as samples from an unknown, non-linear deformation of an underlying Riemannian manifold, which is parametrized by a few normalized latent variables. By leveraging a repeated measurement sampling strategy, we present a method for learning an embedding in $\mathbb{R}^d$ that is isometric to the latent variables of the manifold. These data coordinates, being invariant under smooth changes of variables, enable matching between different instrumental observations of the same phenomenon. Our embedding is obtained using a LOcal Conformal Autoencoder (LOCA), an algorithm that constructs an embedding to rectify deformations by using a local z-scoring procedure while preserving relevant geometric information. We demonstrate the isometric embedding properties of LOCA on various model settings and observe that it exhibits promising interpolation and extrapolation capabilities. Finally, we apply LOCA to single-site Wi-Fi localization data, and to $3$-dimensional curved surface estimation based on a $2$-dimensional projection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源