论文标题

超几何微分方程的代数方面

Algebraic aspects of hypergeometric differential equations

论文作者

Reichelt, Thomas, Schulze, Mathias, Sevenheck, Christian, Walther, Uli

论文摘要

我们回顾了超几何微分方程的一些经典和现代方面,包括$ $ a $ - hyphemetric of Gel'Fand,Graev,Kapranov和Zelevinsky。该理论的最新进展,例如Euler-Koszul同源性,跳跃现象,不规则性问题和Hodge理论方面,都有更多细节进行了讨论。我们还将高几何系统理论的某些应用用于感谢您的镜像对称性。

We review some classical and modern aspects of hypergeometric differential equations, including $A$-hypergeometric systems of Gel'fand, Graev, Kapranov and Zelevinsky. Some recent advances in this theory, such as Euler-Koszul homology, rank jump phenomena, irregularity questions and Hodge theoretic aspects are discussed with more details. We also give some applications of the theory of hypergeometric systems to toric mirror symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源