论文标题
量子多体系统的样品学习
Sample-efficient learning of quantum many-body systems
论文作者
论文摘要
我们研究了从其吉布斯(热)状态的样品中学习量子多体系统的哈密顿量的问题。这个问题的经典类似物(称为学习图形模型或玻尔兹曼机器)是机器学习和统计数据中的一个充分的问题。在这项工作中,我们为量子哈密顿学习问题提供了第一个样品有效算法。特别是,我们证明了粒子数量(Qudits)中的多个样品是必要的,足以学习L_2-Norm中空间局部哈密顿量的参数。 我们的主要贡献是建立量子多体系统的对数分区函数的强凸度,这与最大的熵估计相同,可以产生我们的样品效率算法。从经典上讲,分区功能的强凸度遵循Gibbs分布的Markov属性。但是,在量子情况下,众所周知,这是以其确切形式违反的。我们介绍了几个新想法,以获得无条件的结果,以避免依靠量子系统的马尔可夫属性,而构成了稍弱的界限。特别是,我们证明了对于吉布斯状态的准局部运算符方差的下限,这可能是独立的。我们的工作为更严格的机器学习技术应用于量子多体问题的应用铺平了道路。
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in machine learning and statistics. In this work, we give the first sample-efficient algorithm for the quantum Hamiltonian learning problem. In particular, we prove that polynomially many samples in the number of particles (qudits) are necessary and sufficient for learning the parameters of a spatially local Hamiltonian in l_2-norm. Our main contribution is in establishing the strong convexity of the log-partition function of quantum many-body systems, which along with the maximum entropy estimation yields our sample-efficient algorithm. Classically, the strong convexity for partition functions follows from the Markov property of Gibbs distributions. This is, however, known to be violated in its exact form in the quantum case. We introduce several new ideas to obtain an unconditional result that avoids relying on the Markov property of quantum systems, at the cost of a slightly weaker bound. In particular, we prove a lower bound on the variance of quasi-local operators with respect to the Gibbs state, which might be of independent interest. Our work paves the way toward a more rigorous application of machine learning techniques to quantum many-body problems.