论文标题

学习家具与图形神经网络的兼容性

Learning Furniture Compatibility with Graph Neural Networks

论文作者

Polania, Luisa F., Flores, Mauricio, Li, Yiran, Nokleby, Matthew

论文摘要

我们提出了一种图形神经网络(GNN)方法来预测图像中一组家具项目的风格兼容性问题。尽管大多数现有结果基于暹罗网络,这些网络评估项目之间的成对兼容性,但拟议的GNN体系结构利用了项目组之间的关系信息。我们提出了两个GNN模型,它们均包含一个深CNN,该模型构成了每个图像的特征表示形式,一个封闭式的复发单元(GRU)网络,该网络模拟了集合中家具项目之间的交互以及计算兼容性分数的聚合函数。在第一个模型中,引入了促进属于同一家具集的物品的聚类嵌入的广义对比损失函数。同样,在第一个模型中,GRU和聚合功能之间的节点之间的边缘函数是固定的,以限制模型的复杂性并允许在较小的数据集上进行训练。在第二个模型中,边缘函数和聚合函数直接从数据中学到。我们展示了兼容性预测的最先进的准确性,并在波恩和新加坡家具数据集中执行了“填写空白”任务。我们进一步介绍了一个名为Target Furniture Collections数据集的新数据集,该数据集包含了6000多个由设计师手工策划的家具,以组成1632个兼容集。我们还展示了该数据集上的卓越预测准确性。

We propose a graph neural network (GNN) approach to the problem of predicting the stylistic compatibility of a set of furniture items from images. While most existing results are based on siamese networks which evaluate pairwise compatibility between items, the proposed GNN architecture exploits relational information among groups of items. We present two GNN models, both of which comprise a deep CNN that extracts a feature representation for each image, a gated recurrent unit (GRU) network that models interactions between the furniture items in a set, and an aggregation function that calculates the compatibility score. In the first model, a generalized contrastive loss function that promotes the generation of clustered embeddings for items belonging to the same furniture set is introduced. Also, in the first model, the edge function between nodes in the GRU and the aggregation function are fixed in order to limit model complexity and allow training on smaller datasets; in the second model, the edge function and aggregation function are learned directly from the data. We demonstrate state-of-the art accuracy for compatibility prediction and "fill in the blank" tasks on the Bonn and Singapore furniture datasets. We further introduce a new dataset, called the Target Furniture Collections dataset, which contains over 6000 furniture items that have been hand-curated by stylists to make up 1632 compatible sets. We also demonstrate superior prediction accuracy on this dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源