论文标题
由小组建议促进的局部敏感的景点敏感
Locality Sensitive Hashing for Set-Queries, Motivated by Group Recommendations
论文作者
论文摘要
局部性敏感散列(LSH)是一种有效的方法来索引一组点,以便我们可以有效地找到查询点的最近邻居。我们将此方法扩展到我们的新颖集合LSH(SLSH),以便可以找到作为查询的一组点的最近邻居。 令$ s(x,y)$是两个点$ x $和$ y $之间的相似之处。我们通过汇总Q $中所有$ p \的相似性$ s(p,x)$来定义相似之处。例如,我们可以将$ s(p,x)$作为$ p $和$ x $之间的角度相似性(即$ 1- {\安排(x,p)}/π$),并通过算术或几何平均汇总或汇总。 我们开发了局部敏感的哈希家族和数据结构,用于大量这种算术和几何平均相似性,并分析其碰撞概率。我们还建立了一个类似的框架和哈希家族以供距离函数。具体而言,我们给出了通过平均或提取最大值的欧几里得距离汇总的结构。 我们利用SLSH解决了大约邻居问题的几何扩展。在此版本中,我们考虑了单位球为椭圆形的度量标准,并用查询指定其方向。 促使我们工作的重要应用是小组推荐系统。这样的系统将电影和用户嵌入了相同的特征空间中,并且推荐电影以供小组一起观看的任务可以使用适当的相似性转化为set-Query $ Q $。
Locality Sensitive Hashing (LSH) is an effective method to index a set of points such that we can efficiently find the nearest neighbors of a query point. We extend this method to our novel Set-query LSH (SLSH), such that it can find the nearest neighbors of a set of points, given as a query. Let $ s(x,y) $ be the similarity between two points $ x $ and $ y $. We define a similarity between a set $ Q$ and a point $ x $ by aggregating the similarities $ s(p,x) $ for all $ p\in Q $. For example, we can take $ s(p,x) $ to be the angular similarity between $ p $ and $ x $ (i.e., $1-{\angle (x,p)}/π$), and aggregate by arithmetic or geometric averaging, or taking the lowest similarity. We develop locality sensitive hash families and data structures for a large set of such arithmetic and geometric averaging similarities, and analyze their collision probabilities. We also establish an analogous framework and hash families for distance functions. Specifically, we give a structure for the euclidean distance aggregated by either averaging or taking the maximum. We leverage SLSH to solve a geometric extension of the approximate near neighbors problem. In this version, we consider a metric for which the unit ball is an ellipsoid and its orientation is specified with the query. An important application that motivates our work is group recommendation systems. Such a system embeds movies and users in the same feature space, and the task of recommending a movie for a group to watch together, translates to a set-query $ Q $ using an appropriate similarity.