论文标题
剪切引起的自我收益活性网络的凝胶化
Shear-induced gelation of self-yielding active networks
论文作者
论文摘要
分子运动产生的主动应力使细胞骨架远离平衡,从而使其具有可调的机械性能,这对于诸如细胞分裂和运动性等多种功能至关重要[1-5]。设计类似的仿生系统是创建可以模仿细胞功能的活动物质的关键先决条件[6-7]。这些长期目标需要了解运动产生的压力如何调整丝状网络的力学[8-11]。在基于微管的活性物质中,动力蛋白电动机会产生扩展的运动,从而导致网络链接的持续破坏和改革[12]。我们研究了这种微观动力学如何改变网络的机械性能,发现网络粘度首先随着施加的剪切速率而增加,然后再过渡到低粘度状态。可以通过调整分子电动机的速度来控制非单调剪切依赖性粘度。一种两国现象学模型,该模型融合了液体和固体样元素,将非单调剪切率依赖性粘度与局部水平流相关联。这些研究表明,扩展网络的流变学不同于先前研究的活性凝胶[13],其中收缩力增强了机械刚度。此外,流动相互作用的游泳者的连续模型不会捕获流动诱导的凝胶化[14-21]。观察活性依赖性粘弹性需要开发模型,以自我赋予软活性固体的自我润滑,其内在的活动应力会流动或加强网络。
Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network.