论文标题
通过分析延续在复杂的空间频率和时间频率之间的一般映射
General Mapping between Complex Spatial and Temporal Frequencies by Analytical Continuation
论文作者
论文摘要
本文介绍了一种通用技术,用于映射复杂的空间频率(或传播常数)$γ=α+jβ$和时间频率$ω=ω__\ text {r}+jΩ__\jω__\ text {i} $的任意电磁结构。该技术基于描述物理现象的复杂函数的分析特性,它调用了分析连续性定理以断言映射函数的独立性,并通过曲线拟合对通用多项式扩展的曲线拟合的限制性域中从已知数据中找到该函数。它不仅适用于接受分析解决方案的规范问题,还适用于\ emph {any}问题,来自特征模式或驱动模式全波仿真结果。为多种系统展示了该提出的技术,即一种无限的有损介质,一种充满介电的矩形波导,定期载荷的传输线,一维光子晶体和一个串联的贴片(SFP)泄漏的斑点(SFP)泄漏 - 波孔(LWA),以及通过分析性的结果通过分析结果来证实。
This paper introduces a general technique for inter-mapping the complex spatial frequency (or propagation constant) $γ=α+jβ$ and the temporal frequency $ω= ω_\text{r}+jω_\text{i}$ of an arbitrary electromagnetic structure. This technique, based on the analytic property of complex functions describing physical phenomena, invokes the analytic continuity theorem to assert the unicity of the mapping function, and find this function from known data within a restricted domain of its analycity by curve-fitting to a generic polynomial expansion. It is not only applicable to canonical problems admitting an analytical solution, but to \emph{any} problems, from eigen-mode or driven-mode full-wave simulation results. The proposed technique is demonstrated for several systems, namely an unbounded lossy medium, a dielectric-filled rectangular waveguide, a periodically-loaded transmission line, a one-dimensional photonic crystal and a series-fed patch (SFP) leaky-wave antenna (LWA), and it is validated either by analytical results or by full-wave simulated results.