论文标题

分散的高斯滤波器用于合作自定位和多目标跟踪

Decentralized Gaussian Filters for Cooperative Self-localization and Multi-target Tracking

论文作者

Sharma, Pranay, Saucan, Augustin-Alexandru, Bucci Jr., Donald J., Varshney, Pramod K.

论文摘要

在许多应用中,用于合作自我定位(CS)的可扩展和分散算法在许多应用中很重要。在这项工作中,我们解决了目标数据关联不确定性下的同时合作自我定位和多目标跟踪(SCS-MTT)的问题,即测量和目标轨道之间的关联尚不清楚。现有的CS和跟踪算法可以假设没有数据关联不确定性,或者采用硬性决定规则进行测量到目标关联。我们提出了一种新型的分散SCS-MTT方法,用于在关联不确定性下的未知和时变数量的目标。基于有效的信念传播(BP)方案获得了针对试剂和靶标的边缘后部密度,而数据关联是通过在所有目标到测量关联概率上边缘化来处理数据关联的。根据平均共识计划提供了分散的单高斯和高斯混合物实现,仅需要与单跳邻居进行沟通。额外的新颖性是一种分散的吉布斯机制,用于有效评估高斯混合物的产物。数值实验表明,与单独的定位和目标跟踪的常规方法相比,CS和MTT性能的改善。

Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源