论文标题

机器人抓握和操纵中基于神经形态事件的滑移检测和抑制

Neuromorphic Event-Based Slip Detection and suppression in Robotic Grasping and Manipulation

论文作者

Muthusamy, Rajkumar, Huang, Xiaoqian, Zweiri, Yahya, Seneviratne, Lakmal, Gan, Dongming

论文摘要

滑动检测对于机器人进行牢固的抓握和精细操纵至关重要。在本文中,提出了一种基于动态视觉的新型手指系统,以进行滑动检测和抑制。我们还提出了一种基线和基于特征的方法,以检测在照明和振动不确定性下对象滑动。设计了一种阈值方法来实时自主采样噪声,以改善滑动检测。此外,提出了一种基于模糊的抑制策略,该策略提出了调节抓地力的基于初期滑移反馈。介绍了我们对我们提出的方法进行的全面实验研究,以进行高性能精度操纵的不确定性和系统。我们还提出了一个滑动指标,以定量评估此类绩效。结果表明,该系统可以有效检测以2kHz的采样速率($ΔT=500μs$),并在发生总滑动之前抑制它们。基于事件的方法有望在工业制造业和家庭服务中高精度操纵任务要求。

Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise in real-time to improve slip detection. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. Results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz ($Δt = 500μs$) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源