论文标题
用于量子计算机上量子材料动态模拟的域特异性编译器
Domain-Specific Compilers for Dynamic Simulations of Quantum Materials on Quantum Computers
论文作者
论文摘要
量子材料动力学的模拟正在成为嘈杂的中间量子量子(NISQ)计算机的有前途的科学应用。但是,由于它们的高闸门率和短的退积时间,NISQ计算机只能为小于给定电路尺寸小的量子电路产生高保真的结果。因此,动态模拟会构成挑战,因为当前算法会在模拟的每个后续步骤中产生大小生长的电路。这强调了量子电路编译器在产生最小尺寸的可执行量子电路的关键作用,从而最大程度地提高了可以在NISQ Fidelity预算中研究的物理现象范围。在这里,我们提供了针对Rigetti和IBM量子计算机的两个特定域特异性量子电路编译器,这些计算机专门设计用于编译在特殊类别的时间依赖性的汉密尔顿人下模拟动力学的电路。编译器的表现优于最先进的通用编译器,就电路尺寸降低而言,较小的通用编译器,而墙上锁定时间的缩小量则高约40%(取决于系统大小和仿真时间步长)。在人工智能中常用的启发式技术上,编译器都随着仿真时间步长和系统大小而良好地扩展。包括两个编译器的代码,以增强未来研究人员的动态模拟结果。我们预计,我们的域特异性编译器将在近距离NISQ计算机上启用量子材料的动态模拟,否则通用编译器将不可能。
Simulation of the dynamics of quantum materials is emerging as a promising scientific application for noisy intermediate-scale quantum (NISQ) computers. Due to their high gate-error rates and short decoherence times, however, NISQ computers can only produce high-fidelity results for those quantum circuits smaller than some given circuit size. Dynamic simulations, therefore, pose a challenge as current algorithms produce circuits that grow in size with each subsequent time-step of the simulation. This underscores the crucial role of quantum circuit compilers to produce executable quantum circuits of minimal size, thereby maximizing the range of physical phenomena that can be studied within the NISQ fidelity budget. Here, we present two domain-specific quantum circuit compilers for the Rigetti and IBM quantum computers, specifically designed to compile circuits simulating dynamics under a special class of time-dependent Hamiltonians. The compilers outperform state-of-the-art general-purpose compilers in terms of circuit size reduction by around 25-30% as well as wall-clock compilation time by around 40% (dependent on system size and simulation time-step). Drawing on heuristic techniques commonly used in artificial intelligence, both compilers scale well with simulation time-step and system size. Code for both compilers is included to enhance the results of dynamic simulations for future researchers. We anticipate that our domain-specific compilers will enable dynamic simulations of quantum materials on near-future NISQ computers that would not otherwise be possible with general-purpose compilers.