论文标题
接头介导的不可逆聚集的Smoluchowski方程
Smoluchowski equations for linker-mediated irreversible aggregation
论文作者
论文摘要
为了研究接头介导的胶体颗粒的聚合,胶体颗粒的价值有限,我们结合了基于Smoluchowski方程的动力学蒙特卡洛模拟和近似理论。我们发现聚集在很大程度上取决于两个参数,即接头和颗粒数的比率以及其扩散系数的比率。这些控制参数在单物种聚集中不存在,并提供了更大的种类和控制结构的控制。我们表明,当存在两个时间尺度时,聚集是非平凡的。我们的聚集动力学理论与动力学蒙特卡洛模拟具有定性和定量一致。我们的结果表明,如何通过接头和颗粒的比率以及扩散系数的比率调节最佳聚集。
In order to study linker-mediated aggregation of colloidal particles with limited valence, we combine kinetic Monte Carlo simulations and an approximate theory based on the Smoluchowski equations. We found that aggregation depends strongly on two parameters, the ratio of the number of linkers and particles and the ratio of their diffusion coefficients. These control parameters are absent in single-species aggregation and provide a much greater variety and control of the resulting structures. We show that aggregation is non-trivial when two time scales of aggregation are present. Our aggregation dynamics theory is in qualitative and quantitative agreement with kinetic Monte Carlo simulations. Our results show how the optimal aggregation may be tuned through the ratio of the linkers and particles and that of the diffusion coefficients.