论文标题
最大似然度,完整的四元和$ {\ Mathbb C}^*$ - 动作
Maximum likelihood degree, complete quadrics and ${\mathbb C}^*$-action
论文作者
论文摘要
我们研究代数统计中线性浓度模型的最大似然度。我们将其与各种完全四边形的相交问题相关联。这使我们能够提供明确的,基本的,尽管具有高计算复杂性,即ML度量的公式。整个四边形的种类是对角矩阵置换型矩阵的对称矩阵的精确类似物。
We study the maximum likelihood (ML) degree of linear concentration models in algebraic statistics. We relate it to an intersection problem on the variety of complete quadrics. This allows us to provide an explicit, basic, albeit of high computational complexity, formula for the ML-degree. The variety of complete quadrics is an exact analog for symmetric matrices of the permutohedron variety for the diagonal matrices.