论文标题
在三个维度上的混合均匀表面的Strichartz估计
Strichartz estimates for mixed homogeneous surfaces in three dimensions
论文作者
论文摘要
我们获得了与$ \ Mathbb {r}^3 $相关的混合均匀表面相关的尖锐混合Norm Strichartz估计。考虑了和不具有阻尼因子的两个病例。在被认为是阻尼因子的情况下,我们的结果对Carbery,Kenig和Ziesler的结果进行了广泛的概括[CKZ13]。我们使用的方法是首先在本地对所有可能的奇异点进行分类,之后可以通过适当修改Ginibre和Velo [GV92]的方法来解决问题,并使用Ikromov和Müller[IM16]的最近开发的方法。
We obtain sharp mixed norm Strichartz estimates associated to mixed homogeneous surfaces in $\mathbb{R}^3$. Both cases with and without a damping factor are considered. In the case when a damping factor is considered our results yield a wide generalization of a result of Carbery, Kenig, and Ziesler [CKZ13]. The approach we use is to first classify all possible singularities locally, after which one can tackle the problem by appropriately modifying the methods from the paper of Ginibre and Velo [GV92], and by using the recently developed methods by Ikromov and Müller [IM16].