论文标题
计算ODE模型参数的所有可识别函数
Computing all identifiable functions of parameters for ODE models
论文作者
论文摘要
参数可识别性是ode模型的结构属性,用于从数据(即从输入和输出变量)中恢复参数值。该属性是实践中有意义的参数标识的先决条件。在存在非识别性的情况下,重要的是要找到可识别的参数的所有功能。现有算法检查给定参数的给定函数是否可识别,还是在解决条件下找到所有可识别的函数。但是,这种解决性条件并不总是满足,这是一个挑战。我们的第一个主要结果是一种计算所有可识别函数而没有任何其他假设的算法,据我们所知,这是第一个这样的算法。我们的第二个主要结果涉及多个实验的可识别性(在实验中具有一般不同的输入和初始条件)。对于这个问题,我们证明,可以从多个实验中识别的函数集是通过基于输入输入方程的算法(是否满足可溶解性条件)实际计算的,这是以前尚不清楚的。我们给出了一种算法,该算法不仅可以找到这些功能,而且为执行这些功能的实验数量提供了上限。我们提供了介绍的算法的实现。
Parameter identifiability is a structural property of an ODE model for recovering the values of parameters from the data (i.e., from the input and output variables). This property is a prerequisite for meaningful parameter identification in practice. In the presence of nonidentifiability, it is important to find all functions of the parameters that are identifiable. The existing algorithms check whether a given function of parameters is identifiable or, under the solvability condition, find all identifiable functions. However, this solvability condition is not always satisfied, which presents a challenge. Our first main result is an algorithm that computes all identifiable functions without any additional assumptions, which is the first such algorithm as far as we know. Our second main result concerns the identifiability from multiple experiments (with generically different inputs and initial conditions among the experiments). For this problem, we prove that the set of functions identifiable from multiple experiments is what would actually be computed by input-output equation-based algorithms (whether or not the solvability condition is fulfilled), which was not known before. We give an algorithm that not only finds these functions but also provides an upper bound for the number of experiments to be performed to identify these functions. We provide an implementation of the presented algorithms.