论文标题
具有应用的高维功能/标量时间序列的有限样本理论
Finite Sample Theory for High-Dimensional Functional/Scalar Time Series with Applications
论文作者
论文摘要
高维功能时间序列的统计分析是在各种应用中出现的。在这种情况下,除了函数数据的固有无限二维性外,功能变量的数量还可以随串行依赖观测值的数量而增加。在本文中,我们着重于两个多元功能时间序列之间的相关估计跨(自动)协方差项的理论分析,或超出高斯假设的多元功能和标量时间序列的混合物。我们通过提出功能性跨光谱稳定性度量来表征依赖对这些估计的跨项的影响,从而介绍了对依赖性的新观点,这在添加功能线性回归的估计值中至关重要。借助提出的功能性跨光谱稳定性度量,我们为估计的跨(自动)协方差矩阵函数而产生了有用的浓度不平等,以适应更通用的高斯次高斯功能线性过程,并在常用的估计术语中建立有限的样本理论,用于在常用的估计术语中,在常用的功能主体组件分析框架下。使用我们派生的非肌化结果,我们研究了在稀疏性假设下的两个加性功能线性回归应用的正则化估计值,包括功能性线性滞后回归和在高维函数/标量表时间序列的上下文中的功能性线性滞后回归和部分功能线性回归。
Statistical analysis of high-dimensional functional times series arises in various applications. Under this scenario, in addition to the intrinsic infinite-dimensionality of functional data, the number of functional variables can grow with the number of serially dependent observations. In this paper, we focus on the theoretical analysis of relevant estimated cross-(auto)covariance terms between two multivariate functional time series or a mixture of multivariate functional and scalar time series beyond the Gaussianity assumption. We introduce a new perspective on dependence by proposing functional cross-spectral stability measure to characterize the effect of dependence on these estimated cross terms, which are essential in the estimates for additive functional linear regressions. With the proposed functional cross-spectral stability measure, we develop useful concentration inequalities for estimated cross-(auto)covariance matrix functions to accommodate more general sub-Gaussian functional linear processes and, furthermore, establish finite sample theory for relevant estimated terms under a commonly adopted functional principal component analysis framework. Using our derived non-asymptotic results, we investigate the convergence properties of the regularized estimates for two additive functional linear regression applications under sparsity assumptions including functional linear lagged regression and partially functional linear regression in the context of high-dimensional functional/scalar time series.