论文标题

使用暹罗轨道RCNN的多对象跟踪

Multi-Object Tracking with Siamese Track-RCNN

论文作者

Shuai, Bing, Berneshawi, Andrew G., Modolo, Davide, Tighe, Joseph

论文摘要

多对象跟踪系统通常包括检测器的组合,短期链接器,重新识别功能提取器和求解器,该求解器从这些单独的组件中获取输出并做出最终预测。从不同的角度来看,这项工作旨在在单个跟踪系统中统一所有这些。在此方面,我们提出了Siamese Track-Rcnn,这是一个两个阶段检测和轨道框架,由三个功能分支组成:(1)检测分支本地化对象实例; (2)基于暹罗的轨道分支估计对象运动,(3)对象重新识别分支在重新出现时重新激活先前终止的轨道。我们在Motchallenge的两个流行数据集上测试了我们的跟踪系统。 Siamese Track-Rcnn取得的成绩明显高于最先进的结果,同时由于其统一的设计,也更加有效。

Multi-object tracking systems often consist of a combination of a detector, a short term linker, a re-identification feature extractor and a solver that takes the output from these separate components and makes a final prediction. Differently, this work aims to unify all these in a single tracking system. Towards this, we propose Siamese Track-RCNN, a two stage detect-and-track framework which consists of three functional branches: (1) the detection branch localizes object instances; (2) the Siamese-based track branch estimates the object motion and (3) the object re-identification branch re-activates the previously terminated tracks when they re-emerge. We test our tracking system on two popular datasets of the MOTChallenge. Siamese Track-RCNN achieves significantly higher results than the state-of-the-art, while also being much more efficient, thanks to its unified design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源