论文标题

不可取向的分支覆盖物,$ b $ -Hurwitz号码和多参数插孔的积极性

Non-orientable branched coverings, $b$-Hurwitz numbers, and positivity for multiparametric Jack expansions

论文作者

Chapuy, Guillaume, Dołęga, Maciej

论文摘要

我们引入了(加权)Hurwitz数字的2-TADA TAU功能的一参数变形,该功能通过将Schur函数变形为插孔对称函数而获得。我们表明,其系数是带有非负整数系数的变形参数$ b $中的多项式。这些系数通过任意表面(无论是否定向)对球体的总体分支覆盖率进行计算,并以适当的$ b $加权从某种意义上说“测量”。 值得注意的特殊情况包括不可定向的Dessins d'Enfant,我们证明了迄今为止最终取向匹配杰克的猜想和1996年Goulden和Jackson的“ $ b $ conconture”和$β$ - 符号矩阵模型的扩展,HCIZ Integrials of HCIZ Integrial和$ b $ - $ - $ - $ - $ -HURWWITZ数字,我们介绍了我们的构成,我们的成绩是我们的构成,我们的成绩是我们的构建。 (单或双)为$ B = 0 $获得的Hurwitz号码。 在我们的证明中的关键作用是由配备合适的$ b $加权的非定向星座组合模型扮演的,其分区功能满足了无限的PDES。这些PDE具有两个定义,一个由LAX方程给出,另一个是遵循明确组合分解的定义。

We introduce a one-parameter deformation of the 2-Toda tau-function of (weighted) Hurwitz numbers, obtained by deforming Schur functions into Jack symmetric functions. We show that its coefficients are polynomials in the deformation parameter $b$ with nonnegative integer coefficients. These coefficients count generalized branched coverings of the sphere by an arbitrary surface, orientable or not, with an appropriate $b$-weighting that "measures" in some sense their non-orientability. Notable special cases include non-orientable dessins d'enfants for which we prove the most general result so far towards the Matching-Jack conjecture and the "$b$-conjecture" of Goulden and Jackson from 1996, expansions of the $β$-ensemble matrix model, deformations of the HCIZ integral, and $b$-Hurwitz numbers that we introduce here and that are $b$-deformations of classical (single or double) Hurwitz numbers obtained for $b=0$. A key role in our proof is played by a combinatorial model of non-orientable constellations equipped with a suitable $b$-weighting, whose partition function satisfies an infinite set of PDEs. These PDEs have two definitions, one given by Lax equations, the other one following an explicit combinatorial decomposition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源