论文标题

双重复制的重力

Massive Gravity from Double Copy

论文作者

Momeni, Arshia, Rumbutis, Justinas, Tolley, Andrew J.

论文摘要

我们在四个维度上考虑了大规模阳米尔斯理论的双重副本,其脱钩极限是非线性Sigma模型。后者可以被视为重型希格斯模型的低能量有效理论中的主要术语,其中希格斯已经整合了。获得的双复制有效场理论包含一个巨大的自旋2,巨大的自旋-1和一个庞大的自旋0场,我们明确地构建了其相互作用的拉格朗日式,最高到第四阶。我们发现,按照此顺序,旋转2自相互作用与DRGT大量重力理论相匹配,并且所有相互作用都与$λ_3=(m^2 m_ {pl})^{1/3} $ cutoff一致。我们明确地构建了该理论的$λ_3$解耦极限,并表明它等同于标准$λ_3$大量重力解耦极限理论的双层扩展。尽管众所周知,非线性Sigma模型的双重副本是特殊的加里龙,但大规模阳米尔斯理论的去耦极限是一种更通用的加利琳理论。这表明,脱钩极限和双复制程序并不通勤,我们澄清了为什么其运动学因素的缩放范围是这种情况。

We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions are consistent with a $Λ_3= (m^2 M_{Pl})^{1/3}$ cutoff. We construct explicitly the $Λ_3$ decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard $Λ_3$ massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory. This demonstrates that the decoupling limit and double copy procedures do not commute and we clarify why this is the case in terms of the scaling of their kinematic factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源