论文标题

标记点集的兼容路径

Compatible Paths on Labelled Point Sets

论文作者

Arseneva, Elena, Bahoo, Yeganeh, Biniaz, Ahmad, Cano, Pilar, Chanchary, Farah, Iacono, John, Jain, Kshitij, Lubiw, Anna, Mondal, Debajyoti, Sheikhan, Khadijeh, Tóth, Csaba D.

论文摘要

令$ p $和$ q $是$ \ mathbb {r}^2 $的同一基数的有限点集,每个标签从$ 1 $到$ n $。两个非交叉几何图$ g_p $和$ g_q $ spanning $ p $和$ q $,如果对于$ g_p $中的每个face $ f $ in $ g_p $中的每个face $ f $,则在$ g_q $中存在相应的面孔,并且在$ f $中的边界上顺时针订购了同一顺时针。特别是,$ g_p $和$ g_q $必须是同一连接的$ n $ vertex图的直线嵌入。 确定两个标记的点集是否允许兼容的几何路径是NP完整的。我们给出多项式时间算法,以找到兼容的路径或报告在三种情况下不存在:$ o(n)$ $($ o(n)$时间的时间; $ O(n^2)$时间用于两个简单的多边形,其中路径仅限于封闭的多边形内;如果路径被限制为单调,则$ o(n^2 \ log n)$ for Points的时间。

Let $P$ and $Q$ be finite point sets of the same cardinality in $\mathbb{R}^2$, each labelled from $1$ to $n$. Two noncrossing geometric graphs $G_P$ and $G_Q$ spanning $P$ and $Q$, respectively, are called compatible if for every face $f$ in $G_P$, there exists a corresponding face in $G_Q$ with the same clockwise ordering of the vertices on its boundary as in $f$. In particular, $G_P$ and $G_Q$ must be straight-line embeddings of the same connected $n$-vertex graph. Deciding whether two labelled point sets admit compatible geometric paths is known to be NP-complete. We give polynomial-time algorithms to find compatible paths or report that none exist in three scenarios: $O(n)$ time for points in convex position; $O(n^2)$ time for two simple polygons, where the paths are restricted to remain inside the closed polygons; and $O(n^2 \log n)$ time for points in general position if the paths are restricted to be monotone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源