论文标题
用低资源机器翻译的语言因素丰富变压器
Enriching the Transformer with Linguistic Factors for Low-Resource Machine Translation
论文作者
论文摘要
引入因素,也就是说,诸如涉及源代币的语言信息之类的单词特征,可以改善某些设置中的神经机器翻译系统的结果,通常是在经常性体系结构中。这项研究建议增强当前最新的神经机器翻译体系结构,即变压器,以便允许引入外部知识。特别是,我们提出的修改(分量的变压器)使用语言因素将其他知识插入机器翻译系统中。除了使用各种功能外,我们还研究了不同建筑配置的效果。具体而言,我们分析在嵌入级别或编码器级别组合单词和特征的性能,并尝试使用两种不同的组合策略。借助最佳的配置,我们在IWSLT德语到英语任务中的基线变压器比0.8 BLEU的改进。此外,我们尝试了更具挑战性的弗洛雷斯英语至奈帕利基准,其中包括极低的资源和非常遥远的语言,并提高了1.2 BLEU。
Introducing factors, that is to say, word features such as linguistic information referring to the source tokens, is known to improve the results of neural machine translation systems in certain settings, typically in recurrent architectures. This study proposes enhancing the current state-of-the-art neural machine translation architecture, the Transformer, so that it allows to introduce external knowledge. In particular, our proposed modification, the Factored Transformer, uses linguistic factors that insert additional knowledge into the machine translation system. Apart from using different kinds of features, we study the effect of different architectural configurations. Specifically, we analyze the performance of combining words and features at the embedding level or at the encoder level, and we experiment with two different combination strategies. With the best-found configuration, we show improvements of 0.8 BLEU over the baseline Transformer in the IWSLT German-to-English task. Moreover, we experiment with the more challenging FLoRes English-to-Nepali benchmark, which includes both extremely low-resourced and very distant languages, and obtain an improvement of 1.2 BLEU.