论文标题

埃及木乃伊CT扫描的弱监督测量细分

Weakly Supervised Geodesic Segmentation of Egyptian Mummy CT Scans

论文作者

Hati, Avik, Bustreo, Matteo, Sona, Diego, Murino, Vittorio, Del Bue, Alessio

论文摘要

在本文中,我们解决了自动分析从计算机断层扫描(CT)设备获得的3D体积扫描的任务。特别是,我们解决了一个非常有限的数据的特定任务:古埃及木乃伊CT扫描的分割。我们旨在以数字方式解开木乃伊,并确定不同的细分市场,例如身体,绷带和珠宝。由于缺乏针对不同语义区域细分的带注释的数据,因此问题很复杂,因此阻止了强烈监督的方法的使用。因此,我们提出了一种弱监督和有效的互动分割方法来解决这个具有挑战性的问题。在使用直方图分析和模板匹配从其外部区域分割包裹的木乃伊后,我们首先设计一个体素距离度量,以找到针对身体和绷带段的近似解决方案。在这里,我们使用了大地距离,因为体素特征以及体素之间的空间关系已在此措施中纳入。接下来,我们使用基于GrabCut的分割以及在扫描切片上的跟踪方法完善解决方案,该方法将标签分配给卷中的不同区域,使用用户绘制的涂鸦形式的有限监督。使用可视化来证明所提出的方法的效率,并通过定量措施和木乃伊的定性解开验证。

In this paper, we tackle the task of automatically analyzing 3D volumetric scans obtained from computed tomography (CT) devices. In particular, we address a particular task for which data is very limited: the segmentation of ancient Egyptian mummies CT scans. We aim at digitally unwrapping the mummy and identify different segments such as body, bandages and jewelry. The problem is complex because of the lack of annotated data for the different semantic regions to segment, thus discouraging the use of strongly supervised approaches. We, therefore, propose a weakly supervised and efficient interactive segmentation method to solve this challenging problem. After segmenting the wrapped mummy from its exterior region using histogram analysis and template matching, we first design a voxel distance measure to find an approximate solution for the body and bandage segments. Here, we use geodesic distances since voxel features as well as spatial relationship among voxels is incorporated in this measure. Next, we refine the solution using a GrabCut based segmentation together with a tracking method on the slices of the scan that assigns labels to different regions in the volume, using limited supervision in the form of scribbles drawn by the user. The efficiency of the proposed method is demonstrated using visualizations and validated through quantitative measures and qualitative unwrapping of the mummy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源