论文标题

雷达混乱分类的学习策略

Learning Strategies for Radar Clutter Classification

论文作者

Addabbo, Pia, Han, Sudan, Orlando, Danilo, Ricci, Giuseppe

论文摘要

在本文中,我们解决了将杂物返回分类以将其分类为统计均匀子集的问题。分类过程依赖于可观察到的模型,包括通过期望最大化算法求解的潜在变量。通过考虑三种不同的情况来实现杂物协方差矩阵的结构。初步性能分析强调,该提出的技术是将杂物聚集在整个范围内的可行手段。

In this paper, we address the problem of classifying clutter returns in order to partition them into statistically homogeneous subsets. The classification procedure relies on a model for the observables including latent variables that is solved by the expectation-maximization algorithm. The derivations are carried out by accounting for three different cases for the structure of the clutter covariance matrix. A preliminary performance analysis highlights that the proposed technique is a viable means to cluster clutter returns over the range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源