论文标题

半凝结的第3步CARNOT代数和对亚曼尼尼亚次外周长的应用

Semigenerated step-3 Carnot algebras and applications to sub-Riemannian perimeter

论文作者

Donne, Enrico Le, Moisala, Terhi

论文摘要

本文有助于研究Carnot组中有限固有周长的集合。我们的目的是表征哪个组唯一具有恒​​定固有正常的集合是垂直半空间。我们的观点是代数:当且仅当每个水平半空间生成的半群是一个垂直半空间时,就会发生这种现象。我们称\ emph {semigenerated}具有此属性的那些卡诺组。 对于Nilpotency的Carnot组,我们就此类组是否没有任何Engel型商来提供半凝结的完整表征。此处介绍的恩格尔型组是最小(就商而言)的反例。 此外,我们给出了一些足够的标准,即任意步骤的卡诺组的半成分。为此,我们定义了一个新的Carnot组,我们称之为$(\ Diamond)$,并概括了M. Marchi定义的类型$(\ star)$的先前概念。作为应用程序,我们以$ $(\ diamond)$组的类型以及没有任何Engel型代数作为商作为商的步骤3组中,从Franchi,Serapioni和Serra-Cassano的意义上来说,对于有限的周长,可以实现强大的重新可结合性结果。

This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a phenomenon happens if and only if the semigroup generated by each horizontal half-space is a vertical half-space. We call \emph{semigenerated} those Carnot groups with this property. For Carnot groups of nilpotency step 3 we provide a complete characterization of semigeneration in terms of whether such groups do not have any Engel-type quotients. Engel-type groups, which are introduced here, are the minimal (in terms of quotients) counterexamples. In addition, we give some sufficient criteria for semigeneration of Carnot groups of arbitrary step. For doing this, we define a new class of Carnot groups, which we call type $(\Diamond)$ and which generalizes the previous notion of type $(\star)$ defined by M. Marchi. As an application, we get that in type $ (\Diamond) $ groups and in step 3 groups that do not have any Engel-type algebra as a quotient, one achieves a strong rectifiability result for sets of finite perimeter in the sense of Franchi, Serapioni, and Serra-Cassano.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源