论文标题
古典群体的扭曲形式
Twisted forms of classical groups
论文作者
论文摘要
我们对经典还原群体方案的扭曲形式进行统一描述。此类组方案是根据有限等级的代数对象构建的,不包括一些小等级的例外。这些对象,增强的奇数代数,由$ 2 $ - 步骤的nilpotent群体组成,其作用是基本的交换环,因此我们为他们开发了基本的下降理论。此外,我们将经典的各向同性还原基团描述为奇怪的统一基团,直到同一基础上。
We give a unified description of twisted forms of classical reductive groups schemes. Such group schemes are constructed from algebraic objects of finite rank, excluding some exceptions of small rank. These objects, augmented odd form algebras, consist of $2$-step nilpotent groups with an action of the underlying commutative ring, hence we develop basic descent theory for them. In addition, we describe classical isotropic reductive groups as odd unitary groups up to an isogeny.