论文标题

具有灵活的边际和创新分布的整数值自回归过程

Integer-valued autoregressive process with flexible marginal and innovation distributions

论文作者

Guerrero, Matheus B., Barreto-Souza, Wagner, Ombao, Hernando

论文摘要

整数自动回归(INAR)过程通常是通过指定创新和操作员来定义的,这通常会导致难以推导该过程的边际特性。在许多实际情况下,一个主要的建模限制是很难证明操作员的选择是合理的。为了克服这些缺点,我们提出了一种新的灵活方法来构建INAR模型:我们预先指定了边际和创新分布。因此,操作员是指定所需的边际和创新分布的结果。我们的新INAR模型具有边际和创新的几何分布,是经典泊松Inar模型的直接替代方法。我们提出的过程具有有趣的随机属性,例如MA($ \ infty $)表示,时间可逆性和过渡概率的封闭形式$ h $ steps $ h $ steps,从而可以进行连贯的预测。我们使用建议的方法与现有的INAR和INGARCH模型进行了比较,分析了皮肤病变的时间序列计数。我们的模型更加坚持数据和更好的预测性能。

INteger Auto-Regressive (INAR) processes are usually defined by specifying the innovations and the operator, which often leads to difficulties in deriving marginal properties of the process. In many practical situations, a major modeling limitation is that it is difficult to justify the choice of the operator. To overcome these drawbacks, we propose a new flexible approach to build an INAR model: we pre-specify the marginal and innovation distributions. Hence, the operator is a consequence of specifying the desired marginal and innovation distributions. Our new INAR model has both marginal and innovations geometric distributed, being a direct alternative to the classical Poisson INAR model. Our proposed process has interesting stochastic properties such as an MA($\infty$) representation, time-reversibility, and closed-forms for the transition probabilities $h$-steps ahead, allowing for coherent forecasting. We analyze time-series counts of skin lesions using our proposed approach, comparing it with existing INAR and INGARCH models. Our model gives more adherence to the data and better forecasting performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源