论文标题
双向非平衡热力学:循环亲和力,涡度潜力和Onsager的原理
Bivectorial Nonequilibrium Thermodynamics: Cycle Affinity, Vorticity Potential, and Onsager's Principle
论文作者
论文摘要
我们在Landauer和Bennett在计算方面的作品以及Hill的化学动力学中概括了一个想法,以强调动力学循环在中镜非平衡热力学(NET)中的重要性。对于连续的随机系统,相位空间的网络是根据周期亲和力$ \ nabla \ wedge \ big(\ MathBf {d}^{ - 1} \ Mathbf {b} \ big)$ and vorticity&worticity&vorticity潜力$ \ mathbf {a} a}( $ \ mathbf {j}^{*} = \ nabla \ times \ times \ mathbf {a} $。每个双向循环夫妻夫妻俩伴侣两个以向量表示的传输过程,并引起了Onsager的互惠性。两个双分动物的标量产物$ \ mathbf {a} \ cdot \ nabla \ wedge \ big(\ mathbf {d}^{ - 1} \ Mathbf {b} \ big)$是无quilibribim稳态稳定状态中局部入围性生产的速率。引入了一个映射涡度以循环亲和力的Onsager操作员。
We generalize an idea in the works of Landauer and Bennett on computations, and Hill's in chemical kinetics, to emphasize the importance of kinetic cycles in mesoscopic nonequilibrium thermodynamics (NET). For continuous stochastic systems, a NET in phase space is formulated in terms of cycle affinity $\nabla\wedge\big(\mathbf{D}^{-1}\mathbf{b}\big)$ and vorticity potential $\mathbf{A}(\mathbf{x})$ of the stationary flux $\mathbf{J}^{*}=\nabla\times\mathbf{A}$. Each bivectorial cycle couples two transport processes represented by vectors and gives rise to Onsager's reciprocality; the scalar product of the two bivectors $\mathbf{A}\cdot\nabla\wedge\big(\mathbf{D}^{-1}\mathbf{b}\big)$ is the rate of local entropy production in the nonequilibrium steady state. An Onsager operator that maps vorticity to cycle affinity is introduced.