论文标题

有效的差距无效:对阻塞的哈密顿量的准化性经​​典模拟

Effective gaps are not effective: quasipolynomial classical simulation of obstructed stoquastic Hamiltonians

论文作者

Bringewatt, Jacob, Jarret, Michael

论文摘要

所有已知的示例都证实了经典模拟算法与静态绝热量子计算(AQC)利用对称的可能性之间的指数分离的可能性,这些量子计算(AQC)将绝热动力学限制为有效的对称子空间。对称性产生较大的有效特征值差距,从而使绝热计算有效。我们提出了一种经典算法,可有效地从$ k $ - 局部stoquastic hamilton $ h $的有效子空间中进行采样,而没有先验地了解其对称性(或近距离)。我们的算法将任何$ k $ -local Hamiltonian映射到图$ g =(v,e)$,带有$ \ lvert v \ rvert = o \ left(\ mathrm {poly}(poly}(n)\ right),其中$ n $是$ n $是Qubits的数量。考虑到Babai的众所周知的结果,我们利用图形同构研究$ g $的自动形态,并在$ \ lvert v \ rvert $中获得算法的准级别 - 元素,以从有效的子空间eigenstates of $ h $的子空间中生产样品。我们的研究结果排除了由$ k $ - 局部哈密顿量中隐藏的对称性产生的静态AQC和经典计算之间的指数分离。此外,我们的$ H $的图形表示不仅限于混乱的汉密尔顿人,并且可能排除在非拼写案例中相应的障碍物,或者在研究$ k $ - 局部汉密尔顿人的其他特性中很有用。

All known examples confirming the possibility of an exponential separation between classical simulation algorithms and stoquastic adiabatic quantum computing (AQC) exploit symmetries that constrain adiabatic dynamics to effective, symmetric subspaces. The symmetries produce large effective eigenvalue gaps, which in turn make adiabatic computation efficient. We present a classical algorithm to efficiently sample from the effective subspace of a $k$-local stoquastic Hamiltonian $H$, without a priori knowledge of its symmetries (or near-symmetries). Our algorithm maps any $k$-local Hamiltonian to a graph $G=(V,E)$ with $\lvert V \rvert = O\left(\mathrm{poly}(n)\right)$ where $n$ is the number of qubits. Given the well-known result of Babai, we exploit graph isomorphism to study the automorphisms of $G$ and arrive at an algorithm quasi-polynomial in $\lvert V\rvert$ for producing samples from the effective subspace eigenstates of $H$. Our results rule out exponential separations between stoquastic AQC and classical computation that arise from hidden symmetries in $k$-local Hamiltonians. Furthermore, our graph representation of $H$ is not limited to stoquastic Hamiltonians and may rule out corresponding obstructions in non-stoquastic cases, or be useful in studying additional properties of $k$-local Hamiltonians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源