论文标题
随机加权匹配:$(1-ε)$近似
Stochastic Weighted Matching: $(1-ε)$ Approximation
论文作者
论文摘要
令$ g =(v,e)$为给定的边缘加权图,然后让其{\ em实现} $ \ Mathcal {g} $是$ g $的随机子图,其中包括每个Edge $ e \ in E $ in E $ in e $ in e $ in e $ in o y $ in o $ p $ p $。在{\ em随机匹配}问题中,目标是在不知道实现$ \ nathcal {g} $的情况下选择一个稀疏的子图$ q $ q $ of $ g $,以便在实现的$ q $中的最大重量匹配(即图形$ q \ q \ cap \ cap \ cap \ nathcal {g} $)在预期的最大匹配中,该匹配的最大程度匹配的是agtimation nime的最大匹配。 $ \ MATHCAL {G} $。 在本文中,我们证明,对于任何希望的小$ε\ in(0,1)$,每个图$ g $都有一个子图$ q $,可以保证$(1-ε)$ - 近似值,并且最高度只有$ o_ {ε,p}(1)$。也就是说,$ Q $的最高度仅取决于$ε$和$ p $(这两个都是必要的),而不是在$ g $,edge-weights等中的节点数量上,等等。 随机匹配问题已在加权和未加权图上进行了广泛的研究。以前,只有(接近)半个亚图的存在以加权图[Yamaguchi和Maehara,Soda'18而闻名; Behnezhad等人,Soda'19]。我们的结果对这些作品有很大的改善,与未加权图的最新图像相匹配[Behnezhad等,Stoc'20],并且基本上解决了近似因素。
Let $G=(V, E)$ be a given edge-weighted graph and let its {\em realization} $\mathcal{G}$ be a random subgraph of $G$ that includes each edge $e \in E$ independently with probability $p$. In the {\em stochastic matching} problem, the goal is to pick a sparse subgraph $Q$ of $G$ without knowing the realization $\mathcal{G}$, such that the maximum weight matching among the realized edges of $Q$ (i.e. graph $Q \cap \mathcal{G}$) in expectation approximates the maximum weight matching of the whole realization $\mathcal{G}$. In this paper, we prove that for any desirably small $ε\in (0, 1)$, every graph $G$ has a subgraph $Q$ that guarantees a $(1-ε)$-approximation and has maximum degree only $O_{ε, p}(1)$. That is, the maximum degree of $Q$ depends only on $ε$ and $p$ (both of which are known to be necessary) and not for example on the number of nodes in $G$, the edge-weights, etc. The stochastic matching problem has been studied extensively on both weighted and unweighted graphs. Previously, only existence of (close to) half-approximate subgraphs was known for weighted graphs [Yamaguchi and Maehara, SODA'18; Behnezhad et al., SODA'19]. Our result substantially improves over these works, matches the state-of-the-art for unweighted graphs [Behnezhad et al., STOC'20], and essentially settles the approximation factor.