论文标题
跨域语义分割的不确定性意识一致性正则化
Uncertainty-Aware Consistency Regularization for Cross-Domain Semantic Segmentation
论文作者
论文摘要
无监督的域适应(UDA)旨在将源域的现有模型调整为仅使用未标记数据的新目标域。大多数现有方法都受到易于出现错误的歧视者网络或不合理的教师模型而产生的明显负转移。此外,UDA中当地的区域一致性在很大程度上被忽略了,并且仅提取全球级别的模式信息不足以使由于滥用上下文而进行功能一致性。为此,我们提出了一种不确定性感知的一致性正则化方法,用于跨域语义分割。首先,我们通过利用目标样本的潜在不确定性信息来引入不确定性引导的一致性损失。因此,可以将来自教师模型的更有意义和可靠的知识转移到学生模型中。我们进一步揭示了当前一致性正规化在最小化域差异时通常不稳定的原因。此外,我们设计了一种类蒙版生成算法,以产生强大的类扰动。在这个面具的指导下,我们提出了一种分类策略,以细粒度的方式实现有效的区域一致性。实验表明,我们的方法优于四个域适应基准的最先进方法,即gtav $ \ rightarrow $ cityScapes and synthia $ \ rightarrow $ cityScapes,virtual kitti $ \ rightual kitti $ \ rightarrow $ kitti $ kitti and cityscapes $ \ fircapes $ \ firnarrow $ kitti $ kitti $ kitti。
Unsupervised domain adaptation (UDA) aims to adapt existing models of the source domain to a new target domain with only unlabeled data. Most existing methods suffer from noticeable negative transfer resulting from either the error-prone discriminator network or the unreasonable teacher model. Besides, the local regional consistency in UDA has been largely neglected, and only extracting the global-level pattern information is not powerful enough for feature alignment due to the abuse use of contexts. To this end, we propose an uncertainty-aware consistency regularization method for cross-domain semantic segmentation. Firstly, we introduce an uncertainty-guided consistency loss with a dynamic weighting scheme by exploiting the latent uncertainty information of the target samples. As such, more meaningful and reliable knowledge from the teacher model can be transferred to the student model. We further reveal the reason why the current consistency regularization is often unstable in minimizing the domain discrepancy. Besides, we design a ClassDrop mask generation algorithm to produce strong class-wise perturbations. Guided by this mask, we propose a ClassOut strategy to realize effective regional consistency in a fine-grained manner. Experiments demonstrate that our method outperforms the state-of-the-art methods on four domain adaptation benchmarks, i.e., GTAV $\rightarrow $ Cityscapes and SYNTHIA $\rightarrow $ Cityscapes, Virtual KITTI $\rightarrow$ KITTI and Cityscapes $\rightarrow$ KITTI.