论文标题
Instantons,Euclidean蠕虫和广告/CFT
Instantons, Euclidean wormholes and AdS/CFT
论文作者
论文摘要
我介绍了关于量子重力(ADS/CFT)中轴心场(例如虫洞),其极端“ D-Instanton”限制及其不足的近端奇异对应物等轴突磁场(例如量子重力)中及其极端“ D-Instanton”限制等的几个最新结果。关于虫洞,我们认为它们不能为路径积分做出贡献,因为稳定性分析表明它们像其他超级超级对象一样碎片。对于混凝土ADS/CFT嵌入,欧几里得鞍点解由生活在模量空间内的地球曲线整洁地描述,通常可以解决用于使用组理论的方法。我们的工作示例是$ ads_5 \ times s^5/\ mathbb {z} _k $,并允许光滑的欧几里得虫洞。对于超对称D-Instanton的解决方案,我们似乎在双$ \ Mathcal {n} = 2 $ Quivers中找到了与Instantons的匹配。这场比赛甚至在没有超对称性的情况下扩展到了自dual Instantons。
I present an informal overview of several recent results about Euclidean saddle points sourced by axion fields in quantum gravity (AdS/CFT), such as wormholes, their extremal "D-instanton" limits and their under-extremal singular counterparts. Concerning wormholes we argue they cannot contribute to the path integral because a stability analysis suggests they fragment like other super-extremal objects. For concrete AdS/CFT embeddings the Euclidean saddle point solutions are neatly described by geodesic curves living inside moduli spaces and can typically be solved for using group theory. Our working example is $AdS_5\times S^5/\mathbb{Z}_k$ and allows for smooth Euclidean wormholes. For the supersymmetric D-instanton-like solutions we seem to find a match with the instantons in the dual $\mathcal{N}=2$ quivers. This match even extends a bit further to self-dual instantons without supersymmetry.