论文标题

用于无校准MRI的高维快速卷积框架(HICU)

High-dimensional Fast Convolutional Framework (HICU) for Calibrationless MRI

论文作者

Zhao, Shen, Potter, Lee C., Ahmad, Rizwan

论文摘要

目的:介绍一个计算过程,用于加速,无校准的磁共振图像(CL-MRI)重建,该重建是快速,记忆效率和尺度到高维成像的。 理论和方法:CL-MRI方法可以实现高加速度和柔性抽样模式,但是它们的临床应用受到计算复杂性和大记忆足迹的限制。提出的计算过程,高维快速循环框架(HICU),提供了快速,记忆有效的无样k空间点的恢复。为了进行演示,HICU应用于六个2D T2加权大脑,七个2D心脏电影,五个3D膝盖和1个多发扩散加权成像(MSDWI)数据集。 结果:2D成像结果表明,与其他CL-MRI方法相比,HICU可以提供一到两个数量级的计算速度,而无需牺牲成像质量。 2D CINE和3D成像结果表明,在HICU中包含的计算加速度技术与基于感官的压缩感测方法相当,具有高达3 dB的信噪比和更好的感知质量,最大提高了3 dB。 MSDWI的结果证明了HICU对于具有挑战性的多弹射回声 - 平面成像应用的可行性。 结论:介绍的方法HICU提供了有效的计算和可扩展性以及对各种MRI应用的可扩展性。

Purpose: To present a computational procedure for accelerated, calibrationless magnetic resonance image (Cl-MRI) reconstruction that is fast, memory efficient, and scales to high-dimensional imaging. Theory and Methods: Cl-MRI methods can enable high acceleration rates and flexible sampling patterns, but their clinical application is limited by computational complexity and large memory footprint. The proposed computational procedure, HIgh-dimensional fast ConvolU-tional framework (HICU), provides fast, memory-efficient recovery of unsampled k-space points. For demonstration, HICU is applied to six 2D T2-weighted brain, seven 2D cardiac cine, five 3D knee, and one multi-shot diffusion weighted imaging (MSDWI) datasets. Results: The 2D imaging results show that HICU can offer one to two orders of magnitude computation speedup compared to other Cl-MRI methods without sacrificing imaging quality. The 2D cine and 3D imaging results show that the computational acceleration techniques included in HICU yield computing time on par with SENSE-based compressed sensing methods with up to 3 dB improvement in signal-to-error ratio and better perceptual quality. The MSDWI results demonstrate the feasibility of HICU for a challenging multi-shot echo-planar imaging application. Conclusions: The presented method, HICU, offers efficient computation and scalability as well as extendibility to a wide variety of MRI applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源