论文标题

使用RLS过滤器和卫星图像的日期太阳辐照预测

Intra-day solar irradiation forecast using RLS filters and satellite images

论文作者

Marchesoni-Acland, Franco, Suárez, Rodrigo Alonso

论文摘要

基于卫星的太阳辐照预测对于短期的天内时间范围很有用,超过了最多3-4小时的数值天气预测。太阳卫星预测的主要技术是基于对地静止卫星图像的复杂云运动估计。这项工作以更简单的方式探讨了卫星信息的使用,即几乎不需要预处理的空间平均值。自适应自动回归模型用于评估此信息对预测性能的影响。提供了有关模型选择的完整分析,提供了卫星平均窗口大小和卫星过去测量值的包含。结果表明:(i)卫星空间平均值是有用的输入,平均窗口大小是一个重要的参数,(ii)卫星滞后有限,空间平均值和空间平均值比加权时间平均更有用,(iii)在每个相同的时间范围内,都可以使用相同的时间范围的固定级别的固定级别的级别的订单,而不是按照自动级别的固定级别的固定级别,则可以使用该级别的级别,并且可以固定均可供应。这些想法对具有中间太阳可变性的区域进行了测试,并且模型成功地超过了提出的最佳智能持久性,此处用作急巧的性能基准。

Satellite-based solar irradiation forecasting is useful for short-term intra-day time horizons, outperforming numerical weather predictions up to 3-4 hours ahead. The main techniques for solar satellite forecast are based on sophisticated cloud motion estimates from geostationary satellite images. This work explores the use of satellite information in a simpler way, namely spatial averages that require almost no preprocessing. Adaptive auto-regressive models are used to assess the impact of this information on the forecasting performance. A complete analysis regarding model selection, the satellite averaging window size and the inclusion of satellite past measurements is provided. It is shown that: (i) satellite spatial averages are useful inputs and the averaging window size is an important parameter, (ii) satellite lags are of limited utility and spatial averages are more useful than weighted time averages, and (iii) there is no value in fine-tuning the orders of auto-regressive models for each time horizon, as the same performance can be obtained by using a fixed well-selected order. These ideas are tested for a region with intermediate solar variability, and the models succeed to outperform a proposed optimal smart persistence, used here as an exigent performance benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源