论文标题

OSLNET:带正交软层层的深层样本分类

OSLNet: Deep Small-Sample Classification with an Orthogonal Softmax Layer

论文作者

Li, Xiaoxu, Chang, Dongliang, Ma, Zhanyu, Tan, Zheng-Hua, Xue, Jing-Hao, Cao, Jie, Yu, Jingyi, Guo, Jun

论文摘要

多个非线性层的深神经网络形成了一个较大的功能空间,当遇到小样本数据时,它很容易导致过度拟合。为了减轻小样本分类的过度拟合,从小样本数据中学习更多的判别特征正在成为一种新趋势。为此,本文旨在找到一个可以促进较大决策范围的神经网络的子空间。具体而言,我们提出了正交软效果层(OSL),这使得分类层中的权重向量在训练和测试过程中保持正交。使用OSL网络的Rademacher复杂性仅为$ \ frac {1} {K} $,其中$ k $是使用完全连接的分类层的网络的类数,导致更严格的概括错误绑定。实验结果表明,所提出的OSL的性能比在四个小样本基准数据集上使用的方法及其适用于大样本数据集的方法更好。代码可在以下网址提供:https://github.com/dongliangchang/oslnet。

A deep neural network of multiple nonlinear layers forms a large function space, which can easily lead to overfitting when it encounters small-sample data. To mitigate overfitting in small-sample classification, learning more discriminative features from small-sample data is becoming a new trend. To this end, this paper aims to find a subspace of neural networks that can facilitate a large decision margin. Specifically, we propose the Orthogonal Softmax Layer (OSL), which makes the weight vectors in the classification layer remain orthogonal during both the training and test processes. The Rademacher complexity of a network using the OSL is only $\frac{1}{K}$, where $K$ is the number of classes, of that of a network using the fully connected classification layer, leading to a tighter generalization error bound. Experimental results demonstrate that the proposed OSL has better performance than the methods used for comparison on four small-sample benchmark datasets, as well as its applicability to large-sample datasets. Codes are available at: https://github.com/dongliangchang/OSLNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源