论文标题

造血模型的数学模型的最佳实验设计

Optimal Experimental Design for Mathematical Models of Hematopoiesis

论文作者

Lomeli, Luis Martinez, Iniguez, Abdon, Shahbaba, Babak, Lowengrub, John S, Minin, Vladimir

论文摘要

造血系统具有高度调节且复杂的结构,其中细胞被组织以成功创建和维持新的血细胞。反馈调节对于严格控制该系统至关重要,但是尚未完全了解控制控制的特定机制。在这项工作中,我们旨在通过进行扰动实验来揭示造血虫素中的潜在机制,其中动物受试者暴露于外部药物以观察系统的响应和进化。为这些研究开发适当的实验设计是一项极具挑战性的任务。为了解决这个问题,我们开发了一种新型的贝叶斯框架,用于扰动实验的最佳设计。我们对暴露于低剂量辐射的小鼠中造血干细胞和祖细胞的数量进行建模。我们使用一个微分方程模型来解释反馈和馈电法规。一个重要的障碍是实验数据不是纵向的,而是每个数据点对应于其他动物。该模型嵌入了分层框架中,其潜在变量捕获未观察到的细胞种群水平。我们根据信息增益的量选择最佳设计,这是通过观察数据之前和之后的概率分布之间的kullback-leibler差异来衡量的。我们使用合成和实验数据评估我们的方法。我们表明,适当的设计也可以更好地估计模型参数,即使受试者相对较少。此外,我们证明模型参数对设计选项显示了广泛的敏感性。我们的方法应允许科学家通过专注于他们感兴趣的特定参数,并为造血剂提供最佳设计。我们的方法可以扩展到使用潜在组件的更复杂的模型。

The hematopoietic system has a highly regulated and complex structure in which cells are organized to successfully create and maintain new blood cells. Feedback regulation is crucial to tightly control this system, but the specific mechanisms by which control is exerted are not completely understood. In this work, we aim to uncover the underlying mechanisms in hematopoiesis by conducting perturbation experiments, where animal subjects are exposed to an external agent in order to observe the system response and evolution. Developing a proper experimental design for these studies is an extremely challenging task. To address this issue, we have developed a novel Bayesian framework for optimal design of perturbation experiments. We model the numbers of hematopoietic stem and progenitor cells in mice that are exposed to a low dose of radiation. We use a differential equations model that accounts for feedback and feedforward regulation. A significant obstacle is that the experimental data are not longitudinal, rather each data point corresponds to a different animal. This model is embedded in a hierarchical framework with latent variables that capture unobserved cellular population levels. We select the optimum design based on the amount of information gain, measured by the Kullback-Leibler divergence between the probability distributions before and after observing the data. We evaluate our approach using synthetic and experimental data. We show that a proper design can lead to better estimates of model parameters even with relatively few subjects. Additionally, we demonstrate that the model parameters show a wide range of sensitivities to design options. Our method should allow scientists to find the optimal design by focusing on their specific parameters of interest and provide insight to hematopoiesis. Our approach can be extended to more complex models where latent components are used.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源