论文标题
OGLE-2017-BLG-0406:$ {\ it Spitzer} $ Microlens视差揭示了内部银河磁盘中旋转M-Dwarf主机的土星质量行星
OGLE-2017-BLG-0406: ${\it Spitzer}$ Microlens Parallax Reveals Saturn-mass Planet orbiting M-dwarf Host in the Inner Galactic Disk
论文作者
论文摘要
我们报告了行星微透镜事件OGE-2017-BLG-0406的发现和分析,该事件在地面和$ {\ it Spitzer} $ satellite中都在太阳能轨道中观察到。在高放大倍率时,地面的调查和随访组密集地观察到光曲线中的异常,并且发现它是由行星/宿主质量比为$ q = 7.0 \ times 10^{-4} $的行星镜头来解释的。仅接地和$ {\ it spitzer} $ - “仅”每个数据每个数据都在2-D Microlens andarax vector $ \ bf {π_ {\ rm e}} $上提供非常强的一维(1-D)约束。合并后,这些产生$ \ bf {π_ {\ rm e}} $的精确度量,以及主机$ m _ {\ rm host} = 0.56 \ pm0.07 \,m_ \ odot $和Planet $ planet $ _ { 0.05 \,m _ {\ rm jup} $。该系统位于$ d _ {\ rm l} = 5.2 \ pm 0.5 \ {\ rm kpc} $从太阳向银河凸起的距离,根据镜头的运动学的说法,主机更有可能是磁盘人口恒星。行星与主机的投影分离为$ a _ {\ perp} = 3.5 \ pm 0.3 \ {\ rm au} $,即雪线的两倍。银河盘运动运动学的一部分是通过基于OGE-IV数据的源正确运动的精确度量确定的。相比之下,来源的$ {\ it gaia} $适当的动作测量遭受灾难性的$ 10 \,σ$错误。
We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the ${\it Spitzer}$ satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of $q=7.0 \times 10^{-4}$ from the light-curve modeling. The ground-only and ${\it Spitzer}$-"only" data each provide very strong one-dimensional (1-D) constraints on the 2-D microlens parallax vector $\bf{π_{\rm E}}$. When combined, these yield a precise measurement of $\bf{π_{\rm E}}$, and so of the masses of the host $M_{\rm host}=0.56\pm0.07\,M_\odot$ and planet $M_{\rm planet} = 0.41 \pm 0.05\,M_{\rm Jup}$. The system lies at a distance $D_{\rm L}=5.2 \pm 0.5 \ {\rm kpc}$ from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is $a_{\perp} = 3.5 \pm 0.3 \ {\rm au}$, i.e., just over twice the snow line. The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the ${\it Gaia}$ proper-motion measurement of the source suffers from a catastrophic $10\,σ$ error.