论文标题
非平衡统计力学的框架。 I.波动的角色和类型
A framework of nonequilibrium statistical mechanics. I. Role and type of fluctuations
论文作者
论文摘要
了解可以增强具有热力学结构的现象学演化方程的波动是建立非平衡统计力学一般框架的关键。这些波动提供了微观细节的理想化表示。我们考虑与马尔可夫过程相关的波动增强方程,并详细阐述了通过统计力学来评估动态材料特性的一般食谱,这些材料特性表征了力 - 浮动本构成定律。具有连续轨迹的Markov工艺以随机微分方程为方便的方便特征,并导致绿色kubo型公式用于动态材料特性。不连续跳跃的马尔可夫工艺包括对能量障碍的过渡,而克莱默斯计算的速率。我们描述了马尔可夫波动的统一方法,并证明了如何在现象学方程的数学结构中反映出适当类型的波动类型(连续与不连续)。
Understanding the fluctuations by which phenomenological evolution equations with thermodynamic structure can be enhanced is the key to a general framework of nonequilibrium statistical mechanics. These fluctuations provide an idealized representation of microscopic details. We consider fluctuation-enhanced equations associated with Markov processes and elaborate the general recipes for evaluating dynamic material properties, which characterize force-flux constitutive laws, by statistical mechanics. Markov processes with continuous trajectories are conveniently characterized by stochastic differential equations and lead to Green-Kubo-type formulas for dynamic material properties. Markov processes with discontinuous jumps include transitions over energy barriers with the rates calculated by Kramers. We describe a unified approach to Markovian fluctuations and demonstrate how the appropriate type of fluctuations (continuous versus discontinuous) is reflected in the mathematical structure of the phenomenological equations.