论文标题
多层网络中使用节点属性的社区检测
Community detection with node attributes in multilayer networks
论文作者
论文摘要
通常使用有关节点之间交互的信息进行网络中的社区检测。已取得了最新的进步,以结合多种类型的交互,从而将标准方法推广到多层网络。但是,通常,人们可以访问有关单个节点,属性或协变量的其他信息。因此,一个相关的问题是如何在此类框架中正确纳入这些额外信息。在这里,我们开发了一种方法,该方法既结合了交互的拓扑结合节点属性,以提取多层网络中的社区。我们提出了一种原则性的概率方法,该方法不假定属性和社区之间的任何先验相关结构,而是将其从数据中删除。这导致了有效的算法实现,可利用数据集的稀疏性,可用于执行多个推理任务。我们在线提供代码的开源实现。我们在合成和现实世界数据上演示了我们的方法,并将性能与不使用任何属性信息的方法进行比较。我们发现,包括节点信息有助于预测缺失的链接或属性。它还导致更容易解释的社区结构,并允许量化输入中给出的节点属性的影响。
Community detection in networks is commonly performed using information about interactions between nodes. Recent advances have been made to incorporate multiple types of interactions, thus generalizing standard methods to multilayer networks. Often though, one can access additional information regarding individual nodes, attributes or covariates. A relevant question is thus how to properly incorporate this extra information in such frameworks. Here we develop a method that incorporates both the topology of interactions and node attributes to extract communities in multilayer networks. We propose a principled probabilistic method that does not assume any a priori correlation structure between attributes and communities but rather infers this from data. This leads to an efficient algorithmic implementation that exploits the sparsity of the dataset and can be used to perform several inference tasks; we provide an open-source implementation of the code online. We demonstrate our method on both synthetic and real-world data and compare performance with methods that do not use any attribute information. We find that including node information helps in predicting missing links or attributes. It also leads to more interpretable community structures and allows the quantification of the impact of the node attributes given in input.