论文标题

Chexbert:使用BERT进行准确放射学标签的自动标签和专家注释组合

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

论文作者

Smit, Akshay, Jain, Saahil, Rajpurkar, Pranav, Pareek, Anuj, Ng, Andrew Y., Lungren, Matthew P.

论文摘要

从放射学文本报告中提取标签可以对医学成像模型进行大规模培训。报告标签的现有方法通常依赖于基于医疗领域知识或专家手动注释的复杂功能工程。在这项工作中,我们介绍了一种基于BERT的医学图像报告标签的方法,该方法利用了可用的基于规则的系统的规模和专家注释的质量。我们展示了最初对基于规则的标签的注释进行训练的生物处当审计的BERT模型的卓越性能,然后在一小部分专家注释中进行了填充,并以自动反向翻译为单位。我们发现,我们的最终模型Chexbert能够胜过具有统计意义的先前最佳基于规则的标签,为在最大的胸部X射线数据集之一的数据集上设定了新的SOTA标签。

The extraction of labels from radiology text reports enables large-scale training of medical imaging models. Existing approaches to report labeling typically rely either on sophisticated feature engineering based on medical domain knowledge or manual annotations by experts. In this work, we introduce a BERT-based approach to medical image report labeling that exploits both the scale of available rule-based systems and the quality of expert annotations. We demonstrate superior performance of a biomedically pretrained BERT model first trained on annotations of a rule-based labeler and then finetuned on a small set of expert annotations augmented with automated backtranslation. We find that our final model, CheXbert, is able to outperform the previous best rules-based labeler with statistical significance, setting a new SOTA for report labeling on one of the largest datasets of chest x-rays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源