论文标题

使用香农熵和Markov-random-Field检测肺CT扫描图像中的COVID-19病变的萤火虫 - 算法支持的方案

Firefly-Algorithm Supported Scheme to Detect COVID-19 Lesion in Lung CT Scan Images using Shannon Entropy and Markov-Random-Field

论文作者

Rajinikanth, Venkatesan, Kadry, Seifedine, Thanaraj, Krishnan Palani, Kamalanand, Krishnamurthy, Seo, Sanghyun

论文摘要

由冠状病毒疾病引起的肺炎(Covid-19)是全球主要威胁之一,研究人员提出了许多检测和治疗程序,即COVID-19。拟议的工作旨在提出一种自动图像处理方案,以从患者记录的肺CT扫描图像(CTI)中提取COVID-19。该计划实施以下程序; (i)图像预处理以增强共同的19个病变,(ii)提取病变的图像后处理,以及(iii)(iii)在提取的病变段和地面真实图像(GTI)之间执行相对分析。这项工作实现了基于萤火虫算法和香农熵(FA+SE)的多阈值,以增强肺炎病变并实现马尔可夫兰助焊剂(MRF)分割,以更好的准确性提取病变。使用从现有图像数据集获得的一类COVID-19 CTI进行测试和验证该提出的方案,并评估了实验结果以证明该方案的临床意义。拟议的工作有助于达到共vid-19病变分割期间的平均准确性> 92%,并且将来可以使用它来检查Covid-19患者的实际临床肺CTI。

The pneumonia caused by Coronavirus disease (COVID-19) is one of major global threat and a number of detection and treatment procedures are suggested by the researchers for COVID-19. The proposed work aims to suggest an automated image processing scheme to extract the COVID-19 lesion from the lung CT scan images (CTI) recorded from the patients. This scheme implements the following procedures; (i) Image pre-processing to enhance the COVID-19 lesions, (ii) Image post-processing to extract the lesions, and (iii) Execution of a relative analysis between the extracted lesion segment and the Ground-Truth-Image (GTI). This work implements Firefly Algorithm and Shannon Entropy (FA+SE) based multi-threshold to enhance the pneumonia lesion and implements Markov-Random-Field (MRF) segmentation to extract the lesions with better accuracy. The proposed scheme is tested and validated using a class of COVID-19 CTI obtained from the existing image datasets and the experimental outcome is appraised to authenticate the clinical significance of the proposed scheme. The proposed work helped to attain a mean accuracy of >92% during COVID-19 lesion segmentation and in future, it can be used to examine the real clinical lung CTI of COVID-19 patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源