论文标题

为可划分的动力图构造繁殖器

Construction of propagators for divisible dynamical maps

论文作者

Chakraborty, Ujan, Chruściński, Dariusz

论文摘要

可划分的动态图在表征量子进化水平的马尔可维亚性方面起着重要作用。可划分的地图提供了马尔可夫半群的重要概括。通常,一个人分析完全正面或正面的分解性,这意味着相应的繁殖物分别是根据完全正面或正图来定义的。对于在任何时候可逆的地图,繁殖物的存在已经可以保证,因此唯一的问题是(完整的)阳性和痕量保护。但是,对于不可逆转的地图而言,问题所涉及的问题要多得多,因为甚至不能保证繁殖物的存在。在本文中,我们提出了一种简单的方法,可以使用广义逆的概念来构建动态图的传播器。我们分析了时间连续和时间间隔地图。由于普遍的逆定义并非唯一定义,因此适用于相应的繁殖器。在简单的量子进化示例中,我们分析了事实证明,完全阳性的其他要求可能会使繁殖物与众不同。

Divisible dynamical maps play an important role in characterizing Markovianity on the level of quantum evolution. Divisible maps provide important generalization of Markovian semigroups. Usually one analyzes either completely positive or just positive divisibility meaning that the corresponding propagators are defined in terms of completely positive or positive maps, respectively. For maps which are invertible at any moment of time the very existence of propagator is already guaranteed and hence the only issue is (complete) positivity and trace-preservation. However, for maps which are not invertible the problem is much more involved since even the existence of a propagator is not guaranteed. In this paper we propose a simple method to construct propagators of dynamical maps using the concept of generalized inverse. We analyze both time-continuous and time-discrete maps. Since the generalized inverse is not uniquely defined the same applies for the corresponding propagator. In simple examples of qubit evolution we analyze it turns out that additional requirement of complete positivity possibly makes the propagator unique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源