论文标题

神经网络如何估计光流?神经心理学启发的研究

How Do Neural Networks Estimate Optical Flow? A Neuropsychology-Inspired Study

论文作者

de Jong, D. B., Paredes-Vallés, F., de Croon, G. C. H. E.

论文摘要

端到端训练有素的卷积神经网络已导致光流估算的突破。最近的进步侧重于通过改进体系结构并在公开可用的MPI-Sintel数据集上设置新的基准来改善光流估计。相反,在本文中,我们研究了深神经网络如何估计光流。更好地理解这些网络的功能对于(i)评估其概括能力是看不见的投入的重要性,以及(ii)提出更改以提高其性能。为了进行调查,我们专注于Fownets,因为它是用于光流估计的编码器描述器神经网络的原型。此外,我们使用了一种过滤识别方法,该方法在发现神经心理学研究中动物大脑中存在的运动过滤器中发挥了重要作用。该方法表明,在最深的飞层中的过滤器对各种运动模式敏感。正如动物大脑中所证明的那样,我们不仅找到了翻译过滤器,而且由于人工神经网络的测量更加容易,我们甚至揭露了扩张,旋转和遮挡过滤器。此外,我们在网络的完善部分和哺乳动物主要视觉皮层中发生的感知填充过程中发现相似之处。

End-to-end trained convolutional neural networks have led to a breakthrough in optical flow estimation. The most recent advances focus on improving the optical flow estimation by improving the architecture and setting a new benchmark on the publicly available MPI-Sintel dataset. Instead, in this article, we investigate how deep neural networks estimate optical flow. A better understanding of how these networks function is important for (i) assessing their generalization capabilities to unseen inputs, and (ii) suggesting changes to improve their performance. For our investigation, we focus on FlowNetS, as it is the prototype of an encoder-decoder neural network for optical flow estimation. Furthermore, we use a filter identification method that has played a major role in uncovering the motion filters present in animal brains in neuropsychological research. The method shows that the filters in the deepest layer of FlowNetS are sensitive to a variety of motion patterns. Not only do we find translation filters, as demonstrated in animal brains, but thanks to the easier measurements in artificial neural networks, we even unveil dilation, rotation, and occlusion filters. Furthermore, we find similarities in the refinement part of the network and the perceptual filling-in process which occurs in the mammal primary visual cortex.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源