论文标题

与多项式递归相关的生长常数的非理性性

Irrationality of growth constants associated with polynomial recursions

论文作者

Wagner, Stephan, Ziegler, Volker

论文摘要

我们考虑满足表单$ x_ {n+1} = p(x_n)$的整数序列,用于某些多项式$ p $ a $ d> 1 $。如果这样的序列倾向于无穷大,那么它可以满足$ x_n \ simaα^{d^n} $的渐近公式,但是关于常数$α$的渐近公式。在本文中,我们表明$α$始终是不合理的或整数。实际上,我们证明了一个更强有力的陈述:如果序列$ g_n $满足$ g_n =aα^n + b + o(α^{ - εn})$的渐近公式,其中$ a,b $是代数是$ a> $ a> 1 $,而序列则包含了无限的整体$ nirgention $ is nir niste nir an Ante ant an nir an An An An An An An An An An An An An An Ante。

We consider integer sequences that satisfy a recursion of the form $x_{n+1} = P(x_n)$ for some polynomial $P$ of degree $d > 1$. If such a sequence tends to infinity, then it satisfies an asymptotic formula of the form $x_n \sim A α^{d^n}$, but little can be said about the constant $α$. In this paper, we show that $α$ is always irrational or an integer. In fact, we prove a stronger statement: if a sequence $G_n$ satisfies an asymptotic formula of the form $G_n = A α^n + B + O(α^{-εn})$, where $A,B$ are algebraic and $α> 1$, and the sequence contains infinitely many integers, then $α$ is irrational or an integer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源