论文标题

比较人类和机器的视觉感知时进行五个点检查

Five Points to Check when Comparing Visual Perception in Humans and Machines

论文作者

Funke, Christina M., Borowski, Judy, Stosio, Karolina, Brendel, Wieland, Wallis, Thomas S. A., Bethge, Matthias

论文摘要

随着机器在复杂识别任务中的人力水平绩效的兴起,越来越多的工作是针对比较人类和机器中信息处理的。这些研究是通过研究另一个系统学习一个系统的激动人心的机会。在这里,我们提出了有关如何设计,进行和解释实验的想法,以便它们在比较人类和机器感知时充分支持对机制的研究。我们通过三个案例研究证明并应用了这些想法。第一个案例研究表明了人类偏见如何影响我们的解释结果,并且几种分析工具可以帮助克服这个人类的参考点。在第二个案例研究中,我们强调了视觉推理任务中必要机制和足够机制之间的差异。因此,我们证明了与以前的建议相反,反馈机制对于所讨论的任务可能不是必需的。第三个案例研究强调了对齐实验条件的重要性。我们发现,在调整实验以使人类和机器之间的条件更加公平时,对象识别的先前观察到的差异并不存在。在介绍对人类和机器中视觉推理的比较研究的清单时,我们希望强调如何克服设计或推理中潜在的陷阱。

With the rise of machines to human-level performance in complex recognition tasks, a growing amount of work is directed towards comparing information processing in humans and machines. These studies are an exciting chance to learn about one system by studying the other. Here, we propose ideas on how to design, conduct and interpret experiments such that they adequately support the investigation of mechanisms when comparing human and machine perception. We demonstrate and apply these ideas through three case studies. The first case study shows how human bias can affect how we interpret results, and that several analytic tools can help to overcome this human reference point. In the second case study, we highlight the difference between necessary and sufficient mechanisms in visual reasoning tasks. Thereby, we show that contrary to previous suggestions, feedback mechanisms might not be necessary for the tasks in question. The third case study highlights the importance of aligning experimental conditions. We find that a previously-observed difference in object recognition does not hold when adapting the experiment to make conditions more equitable between humans and machines. In presenting a checklist for comparative studies of visual reasoning in humans and machines, we hope to highlight how to overcome potential pitfalls in design or inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源